An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH.

نویسندگان

  • Qianqian Wang
  • Liyi Zhou
  • Liping Qiu
  • Danqing Lu
  • Yongxiang Wu
  • Xiao-Bing Zhang
چکیده

Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes.

Europium and terbium complexes of two structurally related ligands have been evaluated as optical probes to monitor changes in lysosomal pH; calibration using ionophores and fluorescent probes allows monitoring of the time dependence of lysosomal pH change, examining the green/red intensity ratio from internalised Tb-Eu complexes.

متن کامل

A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response

We characterize a new water soluble fluorescent probe sensitive to changes in pH. The new probe shows spectral shifts and intensity changes in different pH media, in a wavelength ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level. The new probe’s response is based on the ability of the boronic acid group to interact with str...

متن کامل

pH-dependent regulation of lysosomal calcium in macrophages.

Calcium measurements in acidic vacuolar compartments of living cells are few, primarily because calibration of fluorescent probes for calcium requires knowledge of pH and the pH-dependence of the probe calcium-binding affinities. Here we report pH-corrected measurements of free calcium concentrations in lysosomes of mouse macrophages, using both ratiometric and time-resolved fluorescence micros...

متن کامل

A coumarin-indole-based near-infrared ratiometric pH probe for intracellular fluorescence imaging.

New pH-activatable ratiometric fluorescent probes have been developed that have a coumarin structure attached to benzothiazole or indole units with one or two conjugated bonds. They have optical responses in acidic conditions. Probes with benzothiazole (1) and indole (2, 3) units have opposite responses to changes in pH, in terms of shifts in absorption and emission. Quantum chemical calculatio...

متن کامل

A coumarin-quinolinium-based fluorescent probe for ratiometric sensing of sulfite in living cells.

Based on a novel coumarin-quinolinium platform, probe 2 was rationally designed and synthesized as a novel ratiometric fluorescent sensor for sulfite anions. The probe exhibited a wide dynamic concentration range for sulfite anions in a PBS buffer (containing 1 mg mL(-1) BSA). More importantly, the probe was suitable for ratiometric fluorescence imaging in living cells with high sensitivity, fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 16  شماره 

صفحات  -

تاریخ انتشار 2015